Effect of surface morphology on the sputtering yields. I. Ion sputtering from self-affine surfaces

نویسنده

  • Maxim A. Makeev
چکیده

As extensive experimental studies have shown, under certain conditions, ion bombardment of solid targets induces a random (self-affine) morphology on the ion-eroded surfaces. The rough morphology development is known to cause substantial variations in the sputtering yields. In this article, we present a theoretical model describing the sputter yields from random, self-affine surfaces subject to energetic ion bombardment. We employ the Sigmund’s theory of ion sputtering, modified for the case of self-affine surfaces, to compute the sputter yields. We find that the changes in the sputtering yield, associated with the non-planar surface morphology, are strongly dependent on the parameters characterizing the surface roughness (such as the saturation width and the correlation length) and the incident ion beam (such as the incident ion energy and the deposited energy widths). It is shown that, for certain ranges of the parameters variations, surface roughness leads to substantial enhancements in the yield, with magnitude of the effect being more than 100%, as compared to the flat surface value. Furthermore, we find that, depending on the interplay between these parameters, the surface roughness can both enhance and suppress the sputter yields. 2004 Elsevier B.V. All rights reserved. PACS: 68.35.C; 34.50.D; 81.65.C; 79.20.R

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of surface morphology on the sputtering yields. II. Ion sputtering from rippled surfaces

Off-normal ion bombardment of solid targets with energetic particles often leads to development of periodically modulated structures on the surfaces of eroded materials. Ion-induced surface roughening, in its turn, causes sputtering yield changes. We report on a comprehensive theoretical study of the effect of rippled surface morphology on the sputtering yields. The yield is computed as a funct...

متن کامل

Effect of surface roughness on the secondary ion yield in ion sputtering

There is extensive experimental evidence that, at low temperatures, surface erosion by ion bombardment roughens the sputtered substrate, leading to a self-affine surface. These changes in the surface morphology also modify the secondary ion yield. Here, we calculate analytically the secondary ion yield in terms of parameters characterizing the sputtering process and the interface roughness. © 1...

متن کامل

Stochastic model for surface erosion via ion sputtering: Dynamical evolution from ripple morphology to rough morphology.

Surfaces eroded by ion sputtering are sometimes observed to develop morphologies which are either ripple (periodic) or rough (nonperiodic). We introduce a discrete stochastic model that allows us to interpret these experimental observations within a unified framework. We find that a periodic ripple morphology characterizes the initial stages of the evolution, whereas the surface displays self-a...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

Collisional and thermal effects on liquid lithium sputtering

The lithium sputtering yield from lithium and tin-lithium surfaces in the liquid state under bombardment by low-energy, singly charged particles as a function of target temperature is measured by using the Ion-surface Interaction Experiment facility. Total erosion exceeds that expected from conventional collisional sputtering after accounting for lithium evaporation for temperatures between 200...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004